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The conventional coprime array consists of two uniform linear subarrays to construct an effective dif- 

ference coarray with desirable characteristics. Such linear coprime arrays only provide one-dimensional 

(1-D) direction-of-arrival (DOA) estimation. In this paper, we propose a novel coprime array configura- 

tion with parallel subarrays, along with an effective method for two-dimensional (2-D) DOA estimation. 

The 2-D DOA estimation problem is cast as two separate 1-D problems for reduced complexity and is 

solved using one of the two mechanisms based on the number of sensors and that of sources. When 

there are less sources than the number of sensors, subspace-based and rank-reduction estimation (RARE) 

techniques are sequentially applied to the physical array output. On the other hand, when the number of 

sources is equal to or larger than that of sensors, a virtual difference coarray is formed and group sparse 

reconstruction and least squares operations are then applied. In both scenarios, the proposed methods 

automatically pair the corresponding azimuth and elevation angles. The proposed methods resolve up 

to MN sources using 2 M + N − 1 sensors, which are the same as in the 1-D DOA estimation using con- 

ventional coprime arrays. Simulations results are presented delineating both the accuracy and resolution 

capability of the proposed method. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Direction-of-arrival (DOA) estimation determines the spatial

pectrum of the impinging electromagnetic waves on a sensor ar-

ay. It finds variety of applications in radar, sonar, radio astronomy,

nd mobile communication systems [1] . A large volume of work

as investigated linear arrays for one-dimensional (1-D) DOA esti-

ation, namely, the azimuth domain. Among existing DOA estima-

ion techniques, the multiple signal classification (MUSIC) [2] , es-

imation of signal parameters via rotational invariance techniques

ESPRIT) [3] , and propagator method (PM) [4] are commonly used

ue to their high-resolution direction finding capabilities utiliz-

ng eigen-value decomposition (EVD), singular value decomposi-

ion (SVD), and linear operations with respect to the estimated

ovariance matrix of the received signals, respectively. Recently,

uper-resolution algorithms are proposed for massive MIMO based

n deep learning [5] . In practice, however, many problems require

wo-dimensional (2-D) DOA estimation in both azimuth and ele-

ation domains. While it is straightforward to extend the above
∗ Corresponding author. 
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ethods to their 2-D counterparts [6–8] to deal with a planar or

ircular array, the involved 2-D peak search is computationally ex-

ensive, especially for large number of sensors. Therefore, it is de-

irable to develop an accurate 2-D DOA estimation algorithm with

educed complexity. 

Several methods for 2-D DOA estimation problem were pro-

osed with parallel uniform linear array (ULA) configurations that

onsist of several linear subarrays, converting the problem into

eparate 1-D DOA estimations. In doing so, either the PM based

9–12] or subspace based [13] algorithm can be applied to esti-

ate only one variable, avoiding 2-D angular search. In [9] , a fast

lgorithm was proposed based on two parallel ULAs with N and

 + 1 sensors. The resulting configuration lends itself to formu-

ating three N -sensor subarrays where the azimuth and elevation

ngles can be estimated separately. However, an additional pair

atching process for the estimated azimuth and elevation angles is

equired when multiple sources exist. In addition, the total num-

er of sensors, i.e., N t = 2 N + 1 , is not fully utilized in each esti-

ation stage. The method developed in [10] considers the same

wo parallel ULA structure as used in [9] , but it automatically pairs

he 2-D DOA estimates and achieves improved DOA estimation ac-

uracy by constructing three 2 N -sensor subarrays rather than the
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N -sensor counterparts in [9] . Nevertheless, it still falls short in uti-

lizing all degrees-of-freedoms (DOFs) offered by the array sensors.

In addition, the array configuration used in [9,10] assumes a small

aperture in the elevation domain owing to the half-wavelength

distance constraint between the parallel ULAs which circumvents

creation of grating lobes. Therefore, the performance of the above

methods degrades significantly with high elevation angles, which

is typical in mobile communication environments. The methods in

[11,12] enlarge the aperture in the elevation domain by exploit-

ing three parallel ULAs. However, the number of DOFs in these

methods remains lower than half of the number of sensors (i.e.,

N t /2), limiting the possible number of resolvable sources. A method

was proposed in [13] based on the MUSIC technique. Particularly,

the rank-reduction (RARE) estimator [14] was applied enabling the

three parallel ULAs to be treated as subarrays displaced from a

long ULA, and allowing the resolution of up to (N t − 3) sources.

Clearly, such a ULA-based parallel array design imposes a strict re-

striction on the array aperture and does not achieve a high number

of DOFs. 

For detecting more sources than sensors, it is necessary to have

a higher number of DOFs which can be achieved by exploiting a

sparse array configuration under the coarray equivalence [15,16] . A

sparse array also renders a larger array aperture for high resolu-

tion spatial spectrum estimation. Among the different techniques

for sparse array construction, the recently proposed coprime con-

figurations [17,18] and nested configuration [19] offer systematical

design capability and DOF analysis involving sensors, samples, or

frequencies [20–43] . 

The conventional coprime array developed in [18] consists of

two collocated uniform linear subarrays, where one uses 2 M an-

tennas with an interelement spacing of N units, whereas the other

one uses N elements with an interelement spacing of M units.

By choosing the integer numbers M and N to be coprime, i.e.,

their greatest common divisor is one, MN sources can be identified

with only 2 M + N − 1 sensors. A variety of coprime array config-

urations were developed to achieve higher DOFs and more flexi-

ble array design [44] . However, the above coprime arrays are lim-

ited to the 1-D case. In [45] , we proposed a coprime array con-

figuration for the 2-D DOA estimation, where the two subarrays

are placed in parallel rather than co-linearly. The resulting config-

uration is able to resolve the same number of sources in the 2-

D DOA domain as compared with the conventional linear coprime

array with the same number of sensors for 1-D DOA estimation.

A similar problem was investigated in [46,47] . However, all these

methods have difficulties to resolve the sources with high elevation

angles. 

In this paper, we propose a novel coprime array configuration

with three parallel subarrays for 2-D DOA estimation. Unlike the

methods in [11] and [12] where each of the three parallel subar-

rays is uniform, the proposed method undertakes a sparse array

topology to resolve a significantly higher number of sources. In ad-

dition, the proposed array configuration outperforms the methods

in [45–47] given the same number of DOFs. From array design per-

spective, the extended array aperture in the proposed array config-

uration improves resolution in the elevation domain. Such offering

is more pronounced for high elevation angles. From an algorith-

mic perspective, we propose an effective method to perform 2-D

DOA estimation. The problem is similarly cast as two separate 1-D

DOA estimations, with adopting two different schemes depending

on the number of sensors, N t , and sources, Q . More specifically, for

the case of Q < N t , the MUSIC and RARE techniques are sequentially

applied to the data received at the physical array, whereas when

Q ≥ N t , a virtual difference coarray is first formed from the cross-

covariance matrix of the subarray data, and group sparse recon-

struction and least squares operations are then used to estimate

the 2-D DOAs. In both schemes, the proposed method achieves im-
roved DOA estimation accuracy and properly pairs the source az-

muth and elevation angles. 

The rest of the paper is organized as follows. In Section 2 ,

e describe the signal model of the proposed coprime array con-

guration with parallel subarrays. In Section 3 , an effective DOA

stimation method is presented in two different cases based on

he relationship between N t and Q . Simulation results are pro-

ided in Section 4 to numerically compare the estimation perfor-

ance of the proposed method with those of existing methods.

ection 5 concludes the paper. 

Notions : We use lower-case (upper-case) bold characters to de-

ote vectors (matrices). In particular, I N denotes the N × N iden-

ity matrix, and 1 1 × N and 0 1 × N denote 1 × N vectors with all 1’s

nd 0’s, respectively. (.) ∗ implies complex conjugation, whereas (.) T 

nd (.) H respectively denote the transpose and conjugate trans-

ose of a matrix or vector. vec( · ) denotes the vectorization op-

rator that turns a matrix into a vector by stacking all columns

n top of the another, and diag( x ) denotes a diagonal matrix that

ses the elements of x as its diagonal elements. E( · ) is the statis-

ical expectation operator and � denotes the Kronecker product.

hase( x ) returns the phase of a complex variable x . N 

+ denotes

he set of positive integers. � · � denotes the floor function that

eturns the largest integer not exceeding the argument. N (x | a, b)

nd CN (x | a, b) denote that random variable x follows Gaussian and

omplex Gaussian distributions with mean a and variance b , re-

pectively. ‖ · ‖ 2 denotes the Euclidean ( l 2 ). Tr( A ) and and | A | re-

pectively returns the trace and determinant of matrix A . Re( x ) and

m( x ) denote the real and imaginary parts of complex element x ,

espectively. 

. Array configuration and signal model 

As illustrated in Fig. 1 , the proposed coprime array configura-

ion consists of three sparse ULAs. The subarray 1 has N sensors

ith an interelement spacing of Md , whereas the subarray 2 and 3

ave M − 1 and M sensors, respectively, with an interelement spac-

ng of Nd . The unit interelement spacing d is set to λ/2, where

he λ is the wavelength corresponding to the carrier frequency.

y choosing the M ∈ N 

+ and N ∈ N 

+ to be coprime, the minimum

nterelement spacing along the y -axis remains λ/2 so as to avoid

rating lobes in the azimuth domain. Without loss of generality,

e assume M < N in this paper. The array sensors are positioned

t: 

 (x, y ) | (0 , Mnd) ∪ (d, Nm 1 d) ∪ ( d + Ld, MNd + Nm 2 d ) } (1)

or all n ∈ [0 , N − 1] , m 1 ∈ [1 , M − 1] , m 2 ∈ [0 , M − 1] , n, m 1 , m 2 ∈
 

+ , where ( x , y ) denotes the coordinate in x − y plane. Note that

he difference to the conventional coprime arrays for the 1-D DOA

stimation lies in the fact that these subarrays are no longer co-

inear, but are rather placed in parallel with a distance d and

d, L ∈ N 

+ , respectively. On one hand, the minimum interelement

pacing along the x -axis, i.e., d , guarantees free of the ambigu-

us problem in the elevation domain. Furthermore, the width of

ts mainlobe is inversely proportional to the x -axis array aper-

ure L x . As L increases, the resolution improves as a result of the

arrower mainlobe. However, the corresponding spatial spectrum,

hich generally describes spatial correlation with respect to the

levation grids, tends to include high-level sidelobes as the array

perture increases. Therefore, it is undesirable to use an extremely

arge value of L because it will lead to a deteriorated estimation

ccuracy due to the effect of spurious peaks caused by the corre-

ponding high sidelobe levels. 

Assume that Q far-field narrowband uncorrelated sources s q ( t ),

 = 1 , . . . , Q, for t = 1 , . . . , T , impinge on the array from the pair

f 2-D angles ( θq , φq ), where θq ∈ [0 ◦, 90 ◦] and φq ∈ [ −180 ◦, 180 ◦]

enote the elevation angle and the azimuth angle corresponding to
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Fig. 1. Geometry of the proposed array configuration with three parallel coprime subarrays. 

Fig. 2. Illustration on relationships between ( θ q , φq ) and ( αq , βq ). 
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he q th signal, respectively. Then, the data vectors received at the

 th subarray can be expressed as 

 i (t) = 

Q ∑ 

q =1 

a i (θq , φq ) e 
j2 π

x i 
λ

sin (θq ) cos (φq ) s q ( t) + n i ( t) , (2)

here 

 i (θq , φq ) = 

[ 

e j2 π
y i 

1 
λ

sin (θq ) sin (φq ) , . . . , e j2 π
y i 

N i 
t 

λ
sin (θq ) sin (φq ) 

] T 

, (3)

s the steering vector of the i th subarray corresponding to the pair

f ( θq , φq ) for q = 1 , . . . , Q, i = 1 , 2 , 3 . y i 
j 
, 1 ≤ j ≤ N 

i 
t , denotes the y -

oordinate of the j th sensor in the i th subarray, where N 

i 
t is the to-

al number of sensors in the i th subarray, i.e., N 

1 
t = N, N 

2 
t = M − 1 ,

nd N 

3 
t = M. Similarly, x i represents the position of the i th subar-

ay along the x -axis. In addition, the elements of the noise vectors

n the i th subarray n i ( t ) are assumed to be independent and iden-

ically distributed (i.i.d.) random variables following the complex

aussian distribution CN (0 , σ 2 
n I N i t 

) for i = 1 , 2 , 3 . 

In order to decouple the 2-D DOA estimation problem into two

eparated 1-D problems, as shown in Fig. 2 , we define αq , βq ∈ [0 ◦,

80 ◦], q = 1 , . . . , Q, as the angles between the incident direction

nd the y -axis and the x -axis, respectively. αq and βq are related

ith θq and φq through the following relationships: 

os (αq ) = sin (θq ) sin (φq ) , (4)

os (βq ) = sin (θq ) cos (φq ) . (5)
s a result, the received data vectors in (2) becomes 

 i (t) = 

Q ∑ 

q =1 

a i (αq ) e 
j2 π

x i 
λ

cos (βq ) s q (t) + n i (t) , (6)

ith the corresponding steering vector 

 i (αq ) = 

[
e j2 π

y i 
1 
λ

cos (αq ) , . . . , e j2 π
y i 

N t 
λ

cos (αq ) 

]T 

. (7) 

enote s (t) = [ s 1 (t ) , . . . , s Q (t )] T as the signal vector, and A i =
 a i (α1 ) , . . . , a i (αQ )] , as the corresponding manifold of the i th sub-

rray, i = 1 , 2 , 3 . Then, the received data vectors can be rewritten

s 

 i (t) = A i B i s (t) + n i (t) , (8)

here the diagonal matrix is expressed as 

 i = diag 

([ 
e j2 π

x i 
λ

cos (β1 ) , . . . , e j2 π
x i 
λ

cos (βQ ) 
] )

. (9) 

. Proposed DOA estimation method: Q < N t case 

In this and the subsequent sections, we present an effective

pproach for the 2-D DOA estimation using the proposed array

onfiguration. In the light of the relationship between Q and N t ,

wo different cases are considered with distinct mechanisms. In

his section, we address the case where Q < N t , whereas the case

f Q ≥ N t is considered in Section 4 . In both cases, the proposed

ethod automatically pairs the 2-D angles and achieves improved

stimation accuracy over existing techniques. 

When Q < N t , the DOA estimation is based on the N t -

ensor physical array. Stacking all data vectors received at
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the three subarrays x i (t) , i = 1 , 2 , 3 , yields an N t × 1 vector

x (t) = [ x T 1 (t) , x T 2 (t) , x T 3 (t)] T , where x 1 (t) ∈ C 

N×1 , x 2 (t) ∈ C 

(M−1) ×1 ,

x 3 (t) ∈ C 

M×1 , and N t = 2 M + N − 1 . As such, the x ( t ) is treated as

the received data vector of a long linear array, expressed as: 

x (t) = 

Q ∑ 

q =1 

a (αq , βq ) s q (t) + n (t) = Cs (t) + n (t) , (10)

with 

a (αq , βq ) = 

˜ a (αq ) Th (βq ) , (11)

where 

˜ a (αq ) = diag 
(
[ a T 1 (αq ) a 

T 
2 (αq ) a 

T 
3 (αq )] T 

)
, (12)

T = 

[ 

1 1 ×N 0 1 ×(M −1 ) 0 1 ×M 

0 1 ×N 1 1 ×(M−1) 0 1 ×M 

0 1 ×N 0 1 ×(M−1) 1 1 ×M 

] 

T , (13)

h (βq ) = 

[
1 , e jπ cos (βq ) , e j(L +1) π cos (βq ) 

]
T . (14)

Note that the azimuth and elevation angles αq and βq in the corre-

sponding N t × 1 steering vector a ( αq , βq ) can be decoupled as the

product of an N t × N t diagonal matrix ˜ a (αq ) , which only depends

on αq , a 3 × 1 steering vector h ( βq ), which only depends on βq ,

and an N t × 3 transformation matrix T . As such, an exhaustive 2-D

search is avoided. The N t × Q matrix C is defined as the mainfold

corresponding to all steering vectors a ( αq , βq ) for q = 1 , . . . , Q, ex-

pressed as 

C = [ a (α1 , β1 ) , . . . , a (αQ , βQ ) ] = 

[
(A 1 B 1 ) 

T , (A 2 B 2 ) 
T , (A 3 B 3 ) 

T 
]

T . 

(15)

In addition, the corresponding N t × 1 noise vector is denoted as

n (t) = [ n 

T 
1 
(t) , n 

T 
2 
(t) , n 

T 
3 
(t)] T . The N t × N t covariance matrix of the

received data vector x ( t ) is obtained as 

R x = E[ x (t) x 

H (t)] = CR ss C 

H + σ 2 
n I N t . (16)

Following the same process in 2-D MUSIC [6] , the signal and noise

subspaces can be estimated via eigenvalue decomposition with re-

spect to the covariance matrix, i.e., 

R x = U s �s U 

H 
s + U n �n U 

H 
n , (17)

where the N t × Q matrix U s and the N t × (N t − Q ) matrix U n con-

tain the signal and noise subspace eigenvectors, respectively, and

the corresponding eigenvalues are included in the diagonal matri-

ces �s = diag { λ1 , . . . , λQ } and �n = diag { λQ+1 , . . . , λN t } . Then, the

cost function for MUSIC-based DOA estimation can be constructed

as 

f (αg 1 , βg 2 ) = 

1 

a H (αg 1 , βg 2 ) U n U 

H 
n a (αg 1 , βg 2 ) 

= 

1 

h 

H (βg 2 ) T 

H ˜ a H (αg 1 ) U n U 

H 
n ̃  a (αg 1 ) Th (βg 2 ) 

= 

1 

h 

H (βg 2 ) G (αg 1 ) h (βg 2 ) 
, (18)

with G (αg 1 ) = T H ˜ a H (αg 1 ) U n U 

H 
n ̃  a (αg 1 ) T , where g 1 = 1 , . . . , G α, and

g 2 = 1 , . . . , G β denotes the search grids for angles α and β . In

(18) , the difference to the counterpart in the traditional 2-D MU-

SIC method that applied to a planar or circular array lies in the

fact that αg 1 and βg 2 are fully decoupled, which means that the

joint 2-D searching ( αg 1 , βg 2 ) is not necessary when maximizing

f (αg 1 , βg 2 ) to obtain the Q largest peaks. In other words, the es-

timation of αq and βq , q = 1 , . . . , Q, can be simplified as two sep-

arate 1-D DOA estimation problems. We first apply the RARE al-

gorithm to estimate αq by maximizing the following cost function

f (αg 1 ) = 

1 

| G (αg ) | , g 1 = 1 , . . . , G α. (19)

1 
s such, the estimates of αq , i.e., ˆ αq , q = 1 , . . . , Q, can be obtained

y detecting the positions of the Q largest peaks in f ( αg ). Given

ach ˆ αq , we then perform a 1-D search with respect to β , i.e., 

f ( ̂  αq , βg 2 ) = 

1 

h 

H (βg 2 ) G ( ̂  αq ) h (βg 2 ) 
, g 2 = 1 , . . . , G β . (20)

he evaluation angles ˆ βq are identified by the angular positions of

eaks, which are automatically paired with the corresponding ˆ αq ,

 = 1 , . . . , Q . 

Based on the relationship between ( θ q , φq ) and ( αq , βq ) in

4) and (5) , the elevation and azimuth angle for each source can

e estimated as 

ˆ 
q = sin 

−1 

[√ 

cos 2 ( ̂  αq ) + cos 2 ( ̂  βq ) 

]
, (21)

ˆ 
q = tan 

−1 

[
cos ( ̂  αq ) 

cos ( ̂  βq ) 

]
. (22)

t is clear that θq and φq are also automatically paired due to the

aired αq and βq . 

. Proposed DOA estimation method: Q ≥ N t case 

While the RARE and MUSIC can achieve a high resolution in

he spectrum and improved estimation accuracy, the Q < N t con-

ition has to be satisfied so as to obtain the noise subspace. The

roblem of detecting more sources than the number of sensors is

f tremendous interests in various applications. In this section, we

resent an effective approach to achieve a higher number of DOFs

nder the difference coarray equivalence. In addition, both resolu-

ion and estimation accuracy are improved by exploiting the group

parse learning techniques. 

.1. Difference coarray formulation 

The cross-covariance matrix between the data vectors received

t subarrays, x i ( t ) and x k ( t ), 1 ≤ i , k ≤ 3, can be obtained as 

 x ik = E[ x i (t) x 

H 
k (t)] 

= 

Q ∑ 

q =1 

σ 2 
q e 

j2 π
(x i −x k ) 

λ
cos (βq ) a i (αq ) a 

H 
k (αq ) + n i (t) n 

H 
k (t) , 

= 

{
A i R ss D ik A 

H 
k 
, i � = k, 

A i R ss A 

H 
i 

+ σ 2 
n I N i t 

, i = k, 

here R ss = E[ s (t) s H (t)] = diag ([ σ 2 
1 
, . . . , σ 2 

Q 
]) is the Q × Q covari-

nce matrix of the signals whose diagonal entries represent the

ignal scattering power. In addition, 

 ik = B i B 

H 
k = diag 

{[ 
e j2 π

(x i −x k ) 

λ
cos (β1 ) , . . . , e j2 π

(x i −x k ) 

λ
cos (βQ ) 

] T }
, (24)

hich becomes the identity matrix when i = k . 

By vectorizing the matrix R x ik 
, we obtain the following mea-

urement vector: 

 ik = vec (R x ik ) = 

{
Ā ik b ik , i � = k, 

Ā ik b ik + σ 2 
n i , i = k, 

(25)

ith 

¯
 ik = [ ̄a ik (α1 ) , . . . , ̄a ik (αQ )] , (26)

 ik = 

[ 
σ 2 

1 e 
j2 π

(x i −x k ) 

λ
cos (β1 ) , . . . , σ 2 

Q e 
j2 π

(x i −x k ) 

λ
cos (βQ ) 

] T 
, (27)

here ā ik (αq ) = a i (αq ) � a ∗
k 
(αq ) for 1 ≤ q ≤ Q , and i = vec (I 

N i t 
) .

enefiting from the Vandermonde structure of vectors a i ( αq ) and



S. Qin, Y.D. Zhang and M.G. Amin / Signal Processing 172 (2020) 107428 5 

a  

T  

s  

t  

a  

p  

t  

r  

u  

c  

n

4

 

s

z

w  

o  

t  

t  

a  

s  

g  

α  

f  

u  

m  

a  

p  

s  

r  

t

 

v

z  

w

�

N  

t  

t  

d  

m  

d  

a  

a  

l

 

t

b  

w  

c  

i  

b  

s  

w  

i  

t  

g  

s  

t  

 

[  

[

P  

w

z

μ

�

�

F  

I  

i  

g  

b  

b  

t

γ

ξ

w  

v  

G

a  

(  

T  

t  

Q  

(

b  

w

A  

A

β

w  

i  

a  

 

a  

a  

c  

b  

l  

[

 k ( αq ), the entries in ā ik (αq ) remain the forms of e jπ(Mn −Nm ) cos (αq ) .

herefore, z ik can be regarded as a data vector received from a

ingle-snapshot signal vector b ik , and the manifold Ā ik corresponds

o a virtual array whose virtual elements are located at the self-

nd cross-lags between different sets of subarrays. Due to the co-

rime property of M and N , there are less redundant elements in

hese virtual arrays. As a consequence, the number of DOFs in the

esulting coarray, which is determined by the cardinality of the

nique sum of self-lags and cross-lags, can be substantially in-

reased, thereby enabling DOA estimation of more signals than the

umber of sensors, i.e., N t . 

.2. Sparsity-based DOA estimation 

The signal vector in (25) , z ik , 1 ≤ i , k ≤ 3, can be sparsely repre-

ented over the entire discretized angular grids as 

 ik = 

{
Ā 

◦
ik 

b 

◦
ik 

, i � = k, 

Ā 

◦
ik 

b 

◦
ik 

+ σ 2 
n i , i = k, 

(28) 

here Ā 

◦
ik 

is defined as the collection of steering vectors ā ik (αg )

ver all possible grids αg , g = 1 , . . . , G α, with G α � Q , and b 

◦
ik 

is

he sparse vector whose non-zero entry positions correspond to

he DOAs of the estimates of αq , q = 1 , . . . , Q . For different sub-

rray pairs, the non-zero entries generally have distinct values but

hare the same positions in the searching. That is, b 

o 
ik 

exhibits a

roup sparsity across all subarray pairs. Thus, the estimation of

q , q = 1 , . . . , Q, can be solved in the group sparse reconstruction

ramework [48] , and all DOFs in self- and cross-lag can be fully

sed. A number of effective algorithms within the convex opti-

ization [49,50] and Bayesian sparse learning [51] frameworks are

vailable to solve the complex-valued group sparse reconstruction

roblem. In this paper, the complex multitask Bayesian compres-

ive sensing (CMT-BCS) algorithm proposed in [52] and summa-

ized below is used due to its superior performance and robustness

o dictionary coherence. 

In order to exploit both self- and cross-lags, we reformulate the

ectors z ik as: 

 ik = �◦
ik b̄ 

◦
ik + εik , 1 ≤ i, k ≤ 3 , (29)

here each vector z ik employs its respective dictionary matrix, 

◦
ik = 

{[
Ā 

◦
ik 
, i 

]
, i = k, [

Ā 

◦
ik 
, 0 N i t N 

k 
t ×1 

]
, i � = k. 

(30) 

ote that the dimension of the unknown sparse vector is expanded

o b̄ 

◦
ik 

by an additional element of the noise power σ 2 
n . In this case,

he first G α elements of the obtained estimates of b̄ 

◦
ik 

are used to

etermine the αq , whereas the last element is discarded. Further-

ore, an error vector εik is included in (29) to account for the

iscrepancies between the statistical expectation and the sample

verage in computing the covariance matrices. The discrepancies

re modelled as i.i.d. complex Gaussian as a result of a sufficiently

arge number of samples employed in the averaging. 

Assume that the entries in b̄ 

◦
ik 

are drawn from the product of

he following zero-mean Gaussian distributions: 

¯
 

◦g 

ik ∼ N ( ̄b 

◦g 

ik | 0 , γg I 2 ) , g ∈ [1 , . . . , G α] , (31)

here b̄ 

◦g 

ik 
= [ ̃ b ◦

g R 

ik 
˜ b ◦

g I 

ik 
] T is a 2 × 1 vector consisting of the real part

oefficient ˜ b ◦
g R 

ik 
and the imagery part coefficient ˜ b ◦

g I 

ik 
, correspond-

ng to the g th grid. It is easy to confirm that the b̄ 

◦g 

ik 
trends to

e zero when γ g is set to zero [53–55] . To encourage the spar-

ity of b̄ 

◦
ik 
, a Gamma prior is placed on γ −1 

g ∼ Gamma (γ −1 
g | a, b) ,

here Gamma (x −1 | a, b) = 
(a ) −1 b a x −(a −1) e −
b 
x , with 
( · ) denot-

ng the Gamma function, and a and b are hyper-parameters. Vec-

or γ = [ γ1 , . . . , γG ] 
T contains the variances of entries b̄ 

◦g 

ik 
for all
 = 1 , . . . , G α and is shared by all groups to enforce the group spar-

ity. Likewise, a Gaussian prior N (0 , ξ0 I 2 ) is also placed on εik and

he Gamma prior is placed on ξ−1 
0 

with hyper-parameters c and d .

Define two G α × 1 vectors b̄ 

◦R 

ik 
= [ b 

◦1 R 

ik 
, . . . , b 

◦GR 

ik 
] T and b̄ 

◦I 

ik 
=

 b 
◦1 I 

ik 
, . . . , b 

◦GI 

ik 
] T , the joint posterior density function of b̄ 

◦RI 

ik 
=

( ̄b 

◦R 

ik 
) T , ( ̄b 

◦I 

ik 
) T ] T can be evaluated as 

r ( ̄b 

◦RI 

ik 
| ̄z ik , �◦

ik , γ , ξ0 ) = N ( ̄b 

◦RI 

ik 
| μik , �ik ) , (32)

here 

¯ RI 

ik 
= 

[
Re (z ik ) 

T , Im (z ik ) 
T 
]

T (33) 

ik = ξ−1 
0 �ik �

T 
ik ̄z 

RI 

ik 
, (34) 

ik = 

[
ξ−1 

0 �T 
ik �ik + F −1 

]−1 , (35) 

= 

[
Re(�◦

ik 
) −Im (�◦

ik 
) 

Im (�◦
ik 
) Re (�◦

ik 
) 

]
, (36) 

 = diag (γ1 , . . . , γG , γ1 , . . . , γG α ) . (37)

t is clear that the mean and variance of each scattering coefficients

n b̄ 

◦RI 

ik 
can be derived using (34) and (35) when γ and ξ 0 are

iven. On the other hand, the values of γ and ξ 0 are determined

y maximizing the logarithm of the marginal likelihood, which can

e implemented via the expectation maximization (EM) algorithm

o yield 

(new) 
g = 

1 

9 

3 ∑ 

i,k =1 

(
μ2 

ik,g + μ2 
ik,g+ G α + �ik,gg + �ik, (g+ G α )(g+ G α ) 

)
, (38) 

(new) 
0 

= 

1 

18 G α

3 ∑ 

i,k =1 

(
Tr [ �ik �

T 
ik �ik ] + || ̃ z RI 

ik 
− �ik μik || 2 2 

)
, (39) 

here μik , g and μik,g+ G α are the g th and (g + G α) th elements in

ector μik , and �ik , gg and �ik, (g+ G α )(g+ G α ) are the ( g , g ) and (g +
 α, g + G α) entries in matrix �ik . Because γ and ξ 0 depend on μik 

nd �ik , the CMT-BCS algorithm is iterative and iterates between

34), (35) and (38), (39) until a convergence criterion is reached.

he estimates ˆ αq , q = 1 , . . . , Q, can be obtained corresponding to

he Q largest values in 

∑ 3 
i,k =1 (b 

◦gR 

ik 
+ b 

◦gI 

ik 
) , g = 1 , . . . , G . Then, the

 × 1 vector in (25) , i.e., b ik , i � = k , can be estimated by least squares

LS) fitting, expressed as 

ˆ 
 ik = 

(
ˆ Ā 

H 

ik 
ˆ Ā ik 

)
−1 ˆ Ā 

H 

ik z ik , i � = k, (40)

here 

¯
 ik = [ ̄a ik ( ̂  α1 ) , . . . , ̄a ik ( ̂  αQ )] . (41)

s such, βq , q = 1 , . . . , Q are estimated by 

ˆ 
q = cos −1 

(
−phase ( ̂ b q ) /π

)
, (42) 

here ˆ b q is the q th element of vector ˆ b ik , and 

ˆ βq is thus automat-

cally paired with the corresponding ˆ αq . In the end, the elevation

nd azimuth angles, ˆ θq and 

ˆ φq , can be obtained with (21) and (22) .

Note that the proposed difference coarray based approach en-

bles to resolve more sources than the number of sensors. While it

lso works for the case of Q < N t , the corresponding estimation ac-

uracy is interior to the counterpart described in previous section

ecause of the errors in the estimated covariance matrix, particu-

arly when the number of data snapshots is not sufficiently high

56] . 
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Fig. 3. Q max versus N t . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. RMSE versus SNR ( Q = 2 ). (a) RMSE θ ; (b) RMSE φ . 
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5. Number of DOFs and computational complexity 

5.1. Analysis of DOFs 

In the proposed approach, the resulting coarray is equivalent to

the conventional coprime array in the 1-D case. That is, the achiev-

able number of estimated signals Q av = MN. For a given number of

physical antennas N t = 2 M + N − 1 , Q av can be optimized by: 

Maximize Q av = MN 

subject to N t = 2 M + N − 1 , (43)

M < N, M, N ∈ N 

+ . 

It is evident that the valid optimal coprime pair is the one that

has 2 M and N as close as possible. This is satisfied by choosing

M = � (N t − 1) / 4 � . In this case, the maximum number of estimated

signals Q av is given by 

Q max = 

⌊
N t (N t + 2) 

8 

⌋
. (44)

In Fig. 3 , we compare the value of Q max in the proposed approach

with those obtained using the methods described in [10,12,13,46] ,

which are referred to as Li et al., Chen et al., Zhang et al., and

Li and Jiang et al., respectively, in the plots. While Q max increases

with N t in all methods, it is clear that the coprime structure-based

approaches (the proposed method and that proposed by Li and

Jiang et al.) significantly outperform other approaches. In partic-

ular, when N t > 6, the coprime structure-based approaches resolve

more sources than the number of array sensors, whereas for other

methods, the number of resolvable sources is less than the number

of sensors. 

5.2. Analysis of computational complexity 

Here, we compare their computational complexity using the

same number of array elements N t . When the number of sources

Q is smaller than the number of sensors, i.e., Q < N t , the com-

plexity of the proposed approach mainly includes four parts: com-

putation of the covariance matrix, eigenvalue decomposition, es-

timation of azimuth angles using RARE, and estimation of eleva-

tion angles using 1-D MUSIC-like search. Thus, the resulting to-

tal computational load is O(N 

2 
t T + N 

3 
t + G αN t + G βN 

2 
t ) ≈ O(N 

2 
t T ) ,

which is far less than that of the 2-D MUSIC counterpart, given

as O(N 

2 
t T + N 

3 
t + G αG βN 

2 
t ) ≈ O(G αG βN 

2 
t ) , under typical circum-

stances such that G αG β � T � N t > Q , where T , G α and G β are the
umber of snapshots, the number of search grids in azimuth and

levation angles, respectively. As a comparison, the methods pro-

osed in [10,12,13] require a similar O(N 

2 
t T ) complexity when

 � N t > Q . However, the available number of DOFs in these pa-

ers are lower than that of the proposed coprime structure-based

pproaches. While both [46] and the proposed approach can re-

olve the case of Q > N t through the coarray with a complexity of

(G 

2 
αN 

2 
t ) in the context of sparse reconstruction, the proposed ap-

roach outperforms the method proposed by Li and Jiang et al. in

46] due to the benefits of the array design with a larger aperture

s well as the group sparsity-based algorithm. 

. Simulation results 

For illustration, we consider 2-D DOA estimation based on the

roposed approach. We set M = 3 and N = 8 , leading to an array

onfiguration of N t = 2 M + N − 1 = 13 antennas. In addition, L = 20

s assumed. Q far-field sources with identical power are assumed

o be on elevation-azimuth plane ( θ q , φq ), where θq ∈ [0 ◦, 90 ◦] and

q ∈ [ −90 ◦, 90 ◦] , for q = 1 , . . . , Q . The grid interval in the angular

pace is set to 0.2 ◦, and the hyper-parameters in group Bayesian

parse learning is set to a = b = c = d = 0 . 

In Figs. 4 and 5 , we first examine the estimation accuracy and

ompare it with Li et al. [10] , Chen et al. [12] , Zhang et al. [13] ,
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Fig. 5. RMSE versus T ( Q = 2 ). (a) RMSE θ ; (b) RMSE φ . 
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Fig. 6. 2-D DOA estimation results ( Q = 16 ). (a) The proposed approach; (b) The 

method by Li and Jiang et al.. 
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nd Li and Jiang et al. [46] . The average root mean square error

RMSE) of the estimated azimuth and elevation angles, respectively

xpressed as 

RMSE θ = 

√ √ √ √ 

1 

IQ 

I ∑ 

i =1 

Q ∑ 

q =1 

( ̂  θq (i ) − θq ) 2 , 

MSE φ = 

√ √ √ √ 

1 

IQ 

I ∑ 

i =1 

Q ∑ 

q =1 

( ̂  φq (i ) − φq ) 2 , (45) 

re used as the performance metric, where ˆ θq (i ) and 

ˆ φq (i ) are the

stimates of θq and φq for the i th Monte Carlo trial, i = 1 , . . . , I. 

In the first set of simulation, we consider the case Q < N t . To

nable a feasible comparison, Q = 2 < N t = 13 sources impinging

rom (40 ◦, 32 ◦) and (19 ◦, −26 ◦) are considered so that all methods

ave sufficient DOFs for correct identification. We use I = 500 in-

ependent trials in the simulations. Fig. 4 compares the RMSE per-

ormance as a function of input signal-to-noise ratio (SNR), where

 = 500 snapshots are used. Fig. 5 compares the performance with

espect to the number of snapshots, with input SNR set to 0 dB. In

oth figures, it is evident that the proposed approach outperforms

he other methods. The estimation accuracy of the coarray based
ethod (i.e., by Li and Jiang et al.) is inferior to other subspace-

ased approaches due to discrepancies between the statistical ex-

ectation and the sample average in the computed covariance ma-

rices R i , k when extracting the virtual array. Also, the estimates of

oth θ and φ are improved with the increased SNR and the num-

er of snapshots. 

In the second set of simulation, we consider a scenario with

 = 16 sources as an example for the Q > N t case, and the results

re depicted in Fig. 6 . In this case, the number of sources is higher

han N t as well as the available DOFs offered by the methods in

10,12,13] . Therefore, the performance of these methods are not de-

icted. Only the proposed difference coarray based approach suc-

essfully resolve all sources, as shown in Fig. 6 . In this simulation,

he input SNR remains 0 dB, whereas the number of snapshots is

ncreased to 50 0 0 to further demonstrate the capability of the pro-

osed method in dealing with a high number of sources. Compared

o the method by Li and Jiang et al., the proposed array configu-

ation increases the aperture in the elevation domain to achieve

n improved elevation angle resolution. Moreover, the group spar-
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sity makes fully utilization of data across all vectorized covariance

matrices. The proposed technique thus outperforms that of Li and

Jiang et al., as presented in Fig. 6 . 

7. Conclusions 

In this paper, a novel coprime array configuration with paral-

lel subarrays was proposed for 2-D DOA estimation. Two effec-

tive schemes were introduced, each is applicable to a different

scenario involving the number of sources in relation to the num-

ber of sensors. In both cases, the 2-D DOA estimation was de-

composed into two separate 1-D problems where the estimates

of the elevation and azimuth angles were paired automatically

avoiding any problem with associations. The proposed method re-

solves 2-D signals DOAs and the number of detectable sources

is the same as conventional coprime arrays which only resolve

1-D signal DOAs. The effectiveness of the proposed method was

demonstrated by simulations that showed the capability of re-

solving a large number of sources with high angle estimation

accuracy. 
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